Example of Euclid’s Algorithm in
: :
Thus, are primes in .
(a unit!)
Use Euclid’s algorithm to write in :
1 min read
α=4+5i : N(α)=16+25=41 β=4−5i : N(β)=16+25=41
Thus, α,β are primes in Z[i].
4+5i4−5i−1+i=(4−5i)(i)+(−1+i)=(−1+i)(−5)−1=(−1)(1−i)+0GCD=−1 (a unit!)
Use Euclid’s algorithm to write (4+5i)x+(4−5i)y=1 in Z[i]:
−11=(4−5i)−(−1+i)(−5),=(4−5i)+(−1+i)5,=(4−5i)(4+5i−(4−5i)i)5,=(4−5i)+(4+5i)5+(4−5i)(−5i),=(4+5i)5+(4−5i)(1−5i),=(4+5i)(−5)+(4−5i)(−1+5i). x=−5,y=(−1+5i)