Summary of Last Week
is a tautology, for all valuations , . is provable, there is a contradictory finite tableau with root labeled .
Theorem
. The right direction is the Completeness Theorem, and the left direction is the Soundness Theorem.
Extend this Picture
for all valuations such that , we have (we say is a consequence of ).
Defined Set of Finite Tableau
Defined Tableau Proof
Following the defined algorithm generates the complete systematic tableau from with root .
- To do this, you need to fix an order on
- could be infinite…we will always assume is countable, which just means it can be listed as (indices are positive whole numbers).
Example
Generate the complete systematic tableau from .
\usepackage{tikz-cd}
\begin{document}
\begin{math}
\begin{tikzcd}[ampersand replacement=\&, row sep = 1em, column sep = 0.5em] \& {F \neg p_0} \\ \& {T p_0} \\ \& {T ( p_0 \rightarrow p_1)} \\ {Fp_0} \&\& {Tp_1} \\ \bot \&\& {T(p_1 \rightarrow p_2)} \\ \& {Fp_1} \&\& {Tp_2} \\ \& \bot \&\& \top \arrow[no head, from=1-2, to=2-2] \arrow[no head, from=2-2, to=3-2] \arrow[no head, from=3-2, to=4-3] \arrow[no head, from=4-1, to=3-2] \arrow[no head, from=4-3, to=5-3] \arrow[no head, from=5-3, to=6-4] \arrow[no head, from=6-2, to=5-3] \end{tikzcd}
\end{math}
\end{document}
We can see that there exists a non-contradictory branch (the one ending with ) in the complete systematic tableau.
Define valuation by , , and . Then check that agrees with all signed formulas on branch.
Example
Generate complete systematic tableau from with root labeled (trying to check if ).
\usepackage{tikz-cd}
\begin{document}
\begin{math}
\begin{tikzcd}[ampersand replacement=\&, row sep = 1em, column sep = 0.5em] \& {F \neg p_0} \\ \& {Tp_0} \\ \& {T(p_0 \rightarrow p_1)} \\ {F p_0} \&\& {Tp_1} \\ \&\& {T(p_1 \rightarrow p_2)} \\ \& {F p_1} \&\& {Tp_2} \\ \&\&\& {T(p_2 \rightarrow p_3)} \\ \&\&\& \vdots \arrow[no head, from=1-2, to=2-2] \arrow[no head, from=2-2, to=3-2] \arrow[no head, from=3-2, to=4-3] \arrow[no head, from=4-1, to=3-2] \arrow[no head, from=5-3, to=4-3] \arrow[no head, from=5-3, to=6-4] \arrow[no head, from=6-2, to=5-3] \arrow[no head, from=6-4, to=7-4] \end{tikzcd}
\end{math}
\end{document}