Is 29≡□mod59? ((5929)=1?)
29,59 both primes
29≡1mod4(5929)=(2959) by main law since 29≡1mod4(5929)=(291) since 59≡1mod29(5929)=1 since 1≡12mod59
Yes: 29≡□mod59
Search finds that 29≡182mod59
Is 31≡□mod59? (What is (5931)?)
Both are prime and 31≡3mod459≡3mod4(5931)=−(3159) by main law since 31,59≡3mod4(5931)=−(3128) since 59≡28mod31(5931)=−(314⋅7)(5931)=−(314)(317)(5931)=−(317)(5931)=−(−(731)) since 7,31≡3mod4(5931)=(731)=(73)=−1 since 3≡□mod7