Theorem
The number of distinct orbits of _____ is equal to,
Proof
Let .
.
If for some .
Then rearranging by orbits,
The number of distinct orbits of _____ is equal to,
#orbits=∣G∣1g∈G∑∣fixx(g)∣.Let I={(g,x)∈G×X:g∙x=x}.
#I=g∈G∑∣fixx(g)∣=x∈X∑∣stabG(x)∣∣G∣1∑g∈G∣fixx(g)∣=∣G∣1∑x∈X∣stabG(x)∣.
If x′∈orb(x)⟹x′=g∙x for some g∈G⟹stab(x′)=g⋅stab(x)⋅g−1. h⋅x=x⟹(hg−1g)⋅x=x (hg−1)∙(g⋅x)=x (ghg−1)∙(g⋅x)=g∙x ⟹∣stab(x′)∣=∣stab(x)∣
Then rearranging X by orbits, ∑x∈X∣stabG(x)∣=∑distinct orbits∑x∈ such orbit∣stab(x)∣ =∑distinct orbits∣G∣=# distinct orbits